Mono Lake thinolite ages and their implications for the regional $\delta^{18}O$ chronology

1Department of Chemistry and Physics, Mills College, 5000 MacArthur Blvd., Oakland, CA 94613, United States, 2Center for Accelerator Mass Spectrometry, Lawrence Livermore Natl. Laboratory, P.O. Box 808 L-397, Livermore, CA 94550, United States, 3Lamont-Doherty Earth Observatory, Columbia University, Rt. 9W, Palisades, NY 10964-0190, United States
Thinolite

- Thinolite, made of CaCO$_3$, is a pseudo-morph of ikaite.
- Ikaite forms only at low temperatures and under specific water chemistry.

E.S. Dana
Research Questions

- How old are thinolite samples collected from Mono Basin?
- Do the dates of our samples correlate with colder time periods described in the GISP2 ice core?
- Does the correlation between GISP2 and thinolite ages reveal controls on the Mono Lake $\delta^{18}O$ curve?
Methods

- 80% pretreatment leach
- Sample dissolved using phosphoric acid, evolved gas reduced to graphite
- Graphite analyzed by accelerator mass spectrometer
14C Results: thinolite and non-thinolite ages

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>14C Age (BP)</th>
<th>Cal. Age (BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV2-1</td>
<td>15650 ±160</td>
<td>18671 - 18948</td>
</tr>
<tr>
<td>MV2-9</td>
<td>15620 ±160</td>
<td>18662 - 18918</td>
</tr>
<tr>
<td>M09 GR 6</td>
<td>13000 ±110</td>
<td>15247 - 15873</td>
</tr>
<tr>
<td>Non-Thinolites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MV2-3</td>
<td>20550 ±310</td>
<td>24193 - 24930</td>
</tr>
<tr>
<td>MV2-10</td>
<td>30060 ±1040</td>
<td>33260 - 35535</td>
</tr>
</tbody>
</table>
GISP2 δ^{18}O

Mono Lake Tufa/Ikaite

Thinolite

Non-thinolite

Warmer

Colder
Observations: GISP2 $\delta ^{18}O$

- Based on Greenland ice core
- Provides temperature proxy
- Thinolite ages correlate with colder periods described by GISP2 $\delta ^{18}O$ curve
Mono Lake $\delta^{18}O$
Observations: Mono Lake $\delta^{18}O$

- Based on bulk sediment carbonates
- Thinolites correlate with less positive $\delta^{18}O$ values
- During Last Glacial Maximum $\delta^{18}O$ values vary by $\sim 7\%$, suggesting control of Mono $\delta^{18}O$ is more than temperature
Discussion: parameters of Mono Lake $\delta^{18}O$ values

<table>
<thead>
<tr>
<th>More positive value may indicate:</th>
<th>More negative value may indicate:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Colder</td>
<td>• Warmer</td>
</tr>
<tr>
<td>• More evaporation</td>
<td>• Less evaporation</td>
</tr>
<tr>
<td>• Precipitation source mostly Gulf of Mexico</td>
<td>• Precipitation source mostly Pacific</td>
</tr>
<tr>
<td>• Less runoff from glaciers</td>
<td>• More runoff from glaciers</td>
</tr>
</tbody>
</table>
Discussion & Conclusion

• GISP2 and Mono Lake $\delta^{18}O$ behave similarly during the last 30,000 years

• Thinolite ages correlate to Younger Dryas and Last Glacial Maximum

• Thinolite ages represent minimum number of cold periods
Acknowledgments

This work was made possible thanks to the generosity of Paula Zermeño, Scott Stine, Gary Hemming, CAMS staff and Guleed Ali.
Discussion: thinolite dating dilemma

• Reservoir effect of lake and spring water