
Mari Titcombe
GCEP-GREF End of Summer Workshop
August 12-14, 2007
Aerosols and Climate Change

Radiative Forcing Components

- Long-lived greenhouse gases
 - CO₂: 1.06 [1.49 to 1.63], Global, High
 - N₂O: 0.48 [0.43 to 0.53], Global, High
 - CH₄: 0.10 [0.14 to 0.16], Global, High
 - Halocarbons: 0.54 [0.31 to 0.97], Global, High

- Ozone
 - Stratospheric: -0.05 [-0.15 to 0.05], Continental to global, Med
 - Tropospheric: 0.35 [0.25 to 0.65], Continental to global, Med

- Stratospheric water vapour from CH₄: 0.07 [0.02 to 0.12], Global, Low

- Surface albedo
 - Land use: -0.2 [-0.4 to 0.0], Local to continental, Med
 - Black carbon on snow: 0.1 [0.0 to 0.2], Local to continental, Med

- Total Aerosol
 - Direct effect: -0.5 [-0.9 to -0.1], Continental to global, Med
 - Cloud albedo effect: -0.7 [-1.8 to -0.3], Continental to global, Med
 - Linear contrails: 0.01 [0.003 to 0.03], Continental, Low

- Solar irradiance: 0.12 [0.09 to 0.16], Global, Low

- Total net anthropogenic: 1.6 [0.8 to 2.4], Global, Low

IPCC Climate Change 2007: The Physical Science Basis, Summary for Policy Makers, pg. 16.
Aerosols and Climate Change
Aerosol Size Classifications

- Fine Particles
- Ultra-fine Particles
- Nucleation Mode
- Aitkin Mode
- Accumulation Mode
- Coarse Particles

Formed by gas phase condensation
Aerosol Size Classifications

- **Fine Particles**
 - Nucleation Mode
 - Aitkin Mode
 - Accumulation Mode

- **Ultra-fine Particles**

- **Coarse Particles**
 - 0.01 μm
 - 0.1 μm
 - 2.5 μm
 - 10 μm

Growth of ultra-fine particles by monomer condensation or coagulation of clusters
Aerosol Size Classifications

- **Fine Particles**
- **Ultra-fine Particles**
- **Coarse Particles**

Nucleation Mode: 0.01 μm
Aitkin Mode: 0.1 μm
Accumulation Mode: 2.5 μm

- Direct and cloud albedo effect
- Tropospheric lifetimes of 1-2 weeks
Nucleation

- Onset of a phase transition
- Atmospheric nucleation by gas to particle conversion
- Homogeneous nucleation: condensation of vapors or atoms to form small liquid droplets
- Heterogeneous nucleation: coagulation of atoms or molecules onto existing aerosol.
Nucleation Events

Ion Induced Nucleation: ~0.5% of particle current at 1nm.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Condensation Nuclei/Particle Counters</td>
<td>CNC or CPC</td>
<td>optical particle sizing</td>
<td>activation of particles by vapor condensation - growth to detectable sizes</td>
<td>3 nm</td>
</tr>
<tr>
<td>Differential Mobility Analyzer</td>
<td>DMA</td>
<td>electrical mobility size selection</td>
<td>ions seperated by electrical mobility</td>
<td></td>
</tr>
<tr>
<td>Scanning Mobility Particle Sizer</td>
<td>SMPS</td>
<td>electrical mobility size selection, optical detection</td>
<td>aerosol charger, DMA and CPC combination</td>
<td>detection of charged species limited by detector (CPC, electrometer)</td>
</tr>
<tr>
<td>Aerosol Mass Spectrometer</td>
<td>AMS</td>
<td>optical or aerodynamic particle sizing, mass-to-charge species characterization</td>
<td>aerodynamic lenses, optical and/or time of flight sizing, thermal or laser desorption for mass filtration</td>
<td>18 nm</td>
</tr>
<tr>
<td>Aerosol Time of Flight Mass Spectrometer</td>
<td>ATOFMS</td>
<td>aerodynamic particle sizing, mass-to-charge species characterization</td>
<td>aerodynamic diameter infered from optical detection, mass filtration</td>
<td>50 nm (down to 30 nm at low detection efficiencies)</td>
</tr>
<tr>
<td>Thermal Desorption Chemical Ionization Mass Spectrometer</td>
<td>TD-CIMS</td>
<td>mass-to-charge species characterization</td>
<td>desorbed particles are broken into constituent ions for mass filtration</td>
<td>4 nm</td>
</tr>
</tbody>
</table>
Atmospheric Nucleation

- Nucleated clusters are roughly 1 nm in diameter
- Growth to 3 nm occurs on the order of minutes up to an hour

- Uncertainties due to measurement gap:
 - Physical conditions at time of nucleation
 - Species responsible for nucleation
 - Species responsible for growth to detectable sizes
Measurement Objective

Value at Monomer Size Anchored by Measured [H$_2$SO$_4$]

Collision-Controlled Theory

Cluster CIMS

new Nano-SMPS

Measured Size Distribution
Atlanta, 8/19/02, 11:00
(existing Nano SMPS)

\(\frac{dN}{d\log D_p}, \text{cm}^{-3} \)

\(D_p, \text{nm} \)
Sulfuric Acid Correlation

- $\text{SO}_2 + \text{OH}$ (from O_3 photolysis) $\rightarrow \text{H}_2\text{SO}_4$
- Clustering of Hydrated H_2SO_4 occurs under atmospherically relevant conditions
- Observations show similar diurnal patterns for “detectable” particles and H_2SO_4
Sulfuric Acid Correlation

\[\frac{dN}{d\log D_p}, \text{ cm}^{-3} \]

\(D_p, \text{ nm} \)

\([\text{H}_2\text{SO}_4], 10^6 \text{ cm}^{-3} \)

\([\text{OH}], 10^6 \text{ cm}^{-3} \)

\(N_{[3,11]} \)

\(N_{\text{tot}} \)
Beyond Binary

- Particle production rates are often orders of magnitude higher than rates predicted by the binary nucleation of sulfuric acid and water.
- Recent nucleation theories have focused on the ternary nucleation of H₂SO₄-H₂O-NH₃ system
- Laboratory studies show enhanced nucleation of sulfuric acid-water in presence of ppb concentrations of NH₃
- Freshly nucleated particles are composed mainly of ammonium sulfate in certain atmospheric regions
- New particle growth rates may be a factor of 2 to 10 times higher than can be explained by the condensation of sulfuric acid and associated water and/or ammonia molecules onto particles.
Reaction Chamber
• 1000 L
• Teflon film reactor
• Temperature controlled casing
• Photochemical production of H₂SO₄
• Atmospherically relevant precursor gas concentrations
• Sufficient reaction time to reach steady state

Cluster-CIMS Schematic

CIMS Inlet
• “Soft” chemical ionization, intact cluster
• Transverse ion drift field – neutral cluster detection
• Nitrogen sheath flow to minimize water condensation

Mass Filter
• Octopole focusing assembly – transport of intact clusters, gas compression
• Quadrupole mass filter
• Channel electron multiplier
Cluster-CIMS Schematic

Reaction Chamber
- 1000 L
- Teflon film reactor
- Temperature controlled casing
- Photochemical production of H$_2$SO$_4$
- Atmospherically relevant precursor gas concentrations
- Sufficient reaction time to reach steady state

CIMS Inlet
- “Soft” chemical ionization, intact cluster
- Transverse ion drift field – neutral cluster detection
- Nitrogen sheath flow to minimize water condensation
Cluster- CIMS Measurements

Objectives

- Steady state H_2SO_4–H_2O cluster distributions
- Temperature, humidity, precursor concentration dependence
- Effect of NH$_3$, organic amines on cluster distributions
- Atmospheric measurements of freshly nucleated clusters (NCAR- Boulder, CO)
Theoretical Approach
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=\text{odd}}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (β) is multiplied by an accommodation coefficient (α), here it is assumed that $\alpha=1$.
Population Balance Equations

\[
\begin{align*}
\frac{dN_1}{dt} &= R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N \\
\frac{dN_k}{dt} &= \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\end{align*}
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\)
The condensation rate (β) is multiplied by an accommodation coefficient (α), here it is assumed that $\alpha=1$.
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\).
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\).
The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\)
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta \)) is multiplied by an accommodation coefficient (\(\alpha \)), here it is assumed that \(\alpha = 1 \).
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (β) is multiplied by an accommodation coefficient (α), here it is assumed that $\alpha=1$.
The condensation rate (β) is multiplied by an accommodation coefficient (α), here it is assumed that $\alpha=1$
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A'_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A'_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\).
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta \)) is multiplied by an accommodation coefficient (\(\alpha \)), here it is assumed that \(\alpha = 1 \).
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (β) is multiplied by an accommodation coefficient (α), here it is assumed that $\alpha=1$
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{\text{Fuchs}} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{\text{Fuchs}}}{\sqrt{k}} N_k
\]

The condensation rate (β) is multiplied by an accommodation coefficient (α), here it is assumed that $\alpha=1$.
Population Balance Equations

\[\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1,j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2,j})E_j N_j - \gamma A_{\text{Fuchs}} N \]

\[\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{\text{Fuchs}}}{\sqrt{k}} N_k \]

The condensation rate \((\beta)\) is multiplied by an accommodation coefficient \((\alpha)\), here it is assumed that \(\alpha=1\).
Population Balance Equations

\[
\begin{align*}
\frac{dN_1}{dt} &= R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N \\
\frac{dN_k}{dt} &= \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\end{align*}
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\)
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + \underbrace{E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k}_{\text{condensation rate}}
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\)
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\).
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\), here it is assumed that \(\alpha=1\)
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\)
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2,j}) E_j N_j - \gamma N_1 A_{\text{Fuchs}} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma N_k A_{\text{Fuchs}}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\).
Population Balance Equations

\[
\frac{dN_1}{dt} = R - N_1 \sum_{j=1}^{\infty} \beta_{1j} N_j + \sum_{j=2}^{\infty} (1 + \delta_{2j}) E_j N_j - \gamma A_{Fuchs} N
\]

\[
\frac{dN_k}{dt} = \frac{1}{2} \sum_{i+j=k}^{\infty} \beta_{ij} N_i N_j - N_k \sum_{i=1}^{\infty} \beta_{ik} N_i + E_{k+1} N_{k+1} - E_k N_k - \frac{\gamma A_{Fuchs}}{\sqrt{k}} N_k
\]

The condensation rate (\(\beta\)) is multiplied by an accommodation coefficient (\(\alpha\)), here it is assumed that \(\alpha=1\)

Assumptions:

• Dependent on a single species
• All collisions are effective
• Evaporation derived from bulk liquid properties
Summary

- “Bridge the Gap” - molecular clusters to particles
- Field Studies – first quantitative measurements of neutral molecular clusters in continental troposphere
- Laboratory Studies – binary, ternary systems and beyond
- Theoretical Component- analysis of accommodation and evaporation coefficients, empirical input to current modeling of new particle formation
Acknowledgements

Thanks To
Peter McMurry, Mechanical Engineering, Univ. MN
Jeff Roberts, Chemistry, Univ. MN
Dave Hanson, Augsburg College
Fred Eisele, NCAR
Kenjiro Iida, Univ. MN
Chongi Kwang, Univ. MN
Particle Technology Laboratory, Univ. MN

NSF-NRIT, Grant No. ATM-0506674
• Steady state cluster distribution: solve population balance equations, separate accommodation and evaporation

• Evaporation depends on the internal energy of the cluster vs. the surroundings: cluster composition and temperature.

• Accommodation depends on monomer production rate through the frequency of molecular collisions.

• Hold temperature constant, vary monomer production rate: observe changes in distribution and attribute those to accommodation, using Chongai Kuang’s models.

• Once size dependent accommodation coefficients are known: vary temp to look at size dependent evaporation rates.