CO$_2$ and Lake Superior

Cindy Schafer – GCEP, SURE
Michigan Technological University
Project Description

• Model CO₂ cycle within Lake Superior
 – Use measured gaseous and aqueous CO₂ concentrations

• Quantifying regional impact of Lake Superior on the carbon budget
Importance of CO$_2$ Flux over Lake Superior

- Effects on terrestrial CO$_2$ concentrations
- Source or Sink?
- Seasonal and spatial variability
Factors influencing \(\text{CO}_2 \) concentration over Lake Superior

- On-shore and in-lake diurnal photosynthesis and respiration patterns
- Seasonal variations in photosynthesis and respiration
- Atmospheric stability and fetch
Methods

• Micrometeorological instruments on boat mast 10 meters about the deck
• Other Instruments on deck
• Transect out into lake
 – Stations at 3km, 10km and 20km offshore
• Land Station
 – CO₂ gas analyzer
 – Humidity and temperature sensor
Instruments on Ship

- **From deck**
 - GPS
 - Surface water temperature probe

- **Mast 10m above ship deck**
 - Sonic anemometer
 - CO₂ gas analyzer
 - Fine wire thermocouple
 - RM Young wind monitor
 - Humidity and temperature sensor
 - Gyroscope
Flux Calculations

\[
\text{Flux (mg/m}^2 - s) = \left([CO_2] - [CO_2]_o \right) \left(\text{mg/m}^3 \right) \times \left[\frac{\text{mixing height (m)}}{\text{time over lake (s)}} \right]
\]

\[
\text{Mixing Height} = \frac{\left[\frac{\text{Avg Flux (mg/m}^3)}{\text{time over lake (s)}} \right]}{\left([CO_2] - [CO_2]_o \right) \left(\text{mg/m}^3 \right)}
\]
Preliminary Results

CO2 Over Lake Superior

- Flux [mg/m²-s]
- Distance from Shore (km)
- 26-Aug line

CO2 Flux and Fetch

- Flux [mg/m²-s]
- Fetch (km)
- 26-Aug line

CO2 Concentration

- CO2 Concentration (ppm)
- Distance from Shore (km)
- 26-Aug line
What’s Next?

• Motion Correct the wind speed data
 – Recalculate fluxes using vertical wind speed
 – Compare with other flux calculations
• Update Regional Model
• Paper
Thanks To:

• Milton, Jeff, Nancy, Alicia, and ….
• GCEP, DOE, ORAU, ORISE
• Dr. Perlinger, Dr. Urban, David Tobias and Mark Rowe