

CO₂ effects on mercury cycling in two temperate forests Sue Natali State University of New York at Stony Brook

Adapted from: St. Louis *et al.* 2001

Adapted from: St. Louis *et al.* 2001

Potential CO₂ effects

Adapted from: St. Louis et al. 2001

Adapted from: St. Louis et al. 2001

Potential CO₂ effects

Adapted from: St. Louis *et al.* 2001

Hypothesis

- Elevated CO₂ will increase
- inputs of Hg into terrestrial
- systems and decrease
- losses, causing an increase
- in Hg in forest soils.

- How will elevated CO₂ affect:
- Foliar Hg concentrations?
- Litter Hg concentrations?
- Total Hg litter inputs?
- Soil Hg concentrations?
- Total mass of Hg in soils?

Samples collected from ambient and enriched CO₂ (~ambient + 200ppmv) plots

DukeORNLLocationOrange County, NCRoane County, TNLat-long35°58'N, 79°05'W35°54'N,84°20'WAnnual T15.5°C13.9°CAnnual rain1140 mm1371 mm

Annual fain	1140 11111	137111111
Planted	1983	1988
FACE start	1996	1998
CO ₂ treatment	A: ~ 382ppmv E: ~ 582ppmv	A: ~ 393ppmv E: ~ 544ppmv
Plot size	30 m diameter	25 m diameter
Soil type	Hapludalf	Aquic Hapludult
Soil pH	~ 5.3 (water)	~ 4.8 (water)

Canopy

Pinus taeda + Liquidambar styraciflua

Sampling

FOLIAGE

- Three replicates from low (10-12m), mid (12-14m) and upper (14-16m) canopy
- Mature fully-expanded *L. styraciflua* (Sweetgum) leaves at both sites
- Current/0-yr and 1-yr *P. taeda* (loblolly pine) needles at Duke
- Freshly fallen litter from forest floor at ORNL
- Senescent leaves from trees at Duke

Sampling

<u>SOIL</u>

- Collected with soil corer, lined with plastic liners
- Top 20 cm, separated into 5 cm increments
- Replicates pooled for chemical analyses

Samples collected and handled using trace metal clean techniques

Chemical analyses

<u>Hg:</u>

- digested in HNO_3 and H_2O_2
- analyzed by ICP-MS

Soil organic matter (SOM): % loss-on-ignition

pH: 1:1 soil in distilled water and in .01M CaCl

Soil bulk density: soil dry wt/volume

Litter biomass: 2004(Duke)/2005(ORNL) litter baskets

- How will elevated CO₂ affect:
- Foliar Hg concentrations?
- Litter Hg concentrations?
- Total Hg litter inputs?
- Soil Hg concentrations?
- Total mass of Hg in soils?

Age: p<.0001

CO₂ effects on leaf [Hg]

DECREASED [Hg] in 1-yr leaves only

- How will elevated CO₂ affect:
- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations?
- Total Hg litter inputs?
- Soil Hg concentrations?
- Total mass of Hg in soils?

How will elevated CO₂ affect:

- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations?
- Total Hg litter inputs?
- Soil Hg concentrations?
- Total mass of Hg in soils?

CO₂ effects on litter [Hg]

How will elevated CO₂ affect:

- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations? NC
- Total Hg litter inputs?
- Soil Hg concentrations?
- Total mass of Hg in soils?

How will elevated CO₂ affect:

- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations? NC
- Total Hg litter inputs?
- Soil Hg concentrations?
- Total mass of Hg in soils?

CO₂ effects on total Hg litter inputs

Site: p<.0001

How will elevated CO₂ affect:

- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations? NC
- Total Hg litter inputs? NC
- Soil Hg concentrations?
- Total mass of Hg in soils?

How will elevated CO₂ affect:

- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations? NC
- Total Hg litter inputs? NC
- Soil Hg concentrations?
- Total mass of Hg in soils?

CO₂ effects on soil [Hg]

Potential CO₂ effects

Adapted from: St. Louis *et al.* 2001

What mediates CO₂ effects?

* p<0.05

What mediates CO₂ effects?

SOM and pH explain 68% of the variation in soil [Hg] across sites

	ANOVA	ANCOVA
		pH-SOM covariates
Effect	Р	Р
CO ₂	<0.05	
CO ₂ * Site	NS	

	ANOVA	ANCOVA
		pH-SOM covariates
Effect	Р	Р
CO ₂	<0.05	NS
CO ₂ * Site	NS	

	ANOVA	ANCOVA
		pH-SOM covariates
Effect	Р	Р
CO ₂	<0.05	NS
CO ₂ * Site	NS	<0.05

	ANOVA	ANCOVA
		pH-SOM covariates
Effect	Р	Р
CO ₂	<0.05	NS
CO ₂ * Site	NS	<0.05

Perhaps, but additional mechanism at ORNL

How will elevated CO₂ affect:

- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations? NC
- Total Hg litter inputs? NC
- Soil Hg concentrations?
- Total mass of Hg in soils?

How will elevated CO₂ affect:

- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations? NC
- Total Hg litter inputs? NC
- Soil Hg concentrations?
- Total mass of Hg in soils?

CO₂ effects on total soil Hg content

Soil Hg mass 22% greater across sites, but significantly greater only at ORNL

How will elevated CO₂ affect:

- Foliar Hg concentrations? ↓ or NC
- Litter Hg concentrations? NC
- Total Hg litter inputs? NC
- Soil Hg concentrations?
- Total mass of Hg in soils?
 [^] or NC

Hypothesis

Elevated CO₂ will increase inputs of Hg into terrestrial systems and decrease losses, causing an increase in Hg in forest soils.

Elevated CO₂ *is* increasing Hg in forest soils.

But data do not support hypothesis of increased inputs.

Implications

Elevated soil [Hg] may result in:

- greater pulsed inputs to freshwater systems
- decreased decomposition and microbial diversity
- increased Hg volatilization from soils
- increased methyl mercury in surface runoff water

Future plans

- Measure throughfall inputs
- Determine losses in runoff and volatile emissions
- Increase sampling throughout season/year
- Measure other soil parameters—such as S and metal (Fe, AI, Mn) hydroxides
- Expand to other CO₂ experimental sites

Acknowledgements

SUNYSB:

Advisors: Manuel Lerdau & Sergio Sañudo-Wilhelmy and lab members

FACE:

Rich Norby, Colleen Iversen, Adrien Finzi, Ram Oren, David Cooley, Robert Nettles

Support:

National Science Foundation Predoctoral Fellowship GCEP Graduate Research Environmental Fellowship Office of Science (BER), U.S. DOE (Grant DE-FG02-95ER62083)