Separating Soil Respiration into Plant, Fungal, and Bacterial Components using Molecular Targets and Assays

Sharon Gray
Oak Ridge National Laboratory
Human activity alters carbon cycling

http://earthobservatory.nasa.gov/Library/CarbonCycle/Images/carbon_cycle_diagram.jpg
Soil Respiration is a critical component of carbon cycling

http://earthobservatory.nasa.gov/Library/CarbonCycle/Images/carbon_cycle_diagram.jpg
Develop plant, fungal, and bacterial primers for enzymes relevant to respiration

Construct & sequence environmental gene libraries for soil community

Determine relative proportions of bacterial, fungal, and plant respiration in field experiment

Compare results with stable isotope results
Develop plant, fungal, and bacterial primers for enzymes relevant to respiration

Construct & sequence environmental gene libraries for soil community

Determine relative proportions of bacterial, fungal, and plant respiration in field experiment

Compare results with stable isotope results
Winners:
Citrate synthase (TCA pathway)
Enolase (Glycolysis pathway)
Winners:
Citrate synthase (TCA pathway)
Enolase (Glycolysis pathway)
Soil DNA isolation followed by rtPCR for the isolation of enolase genes. PCR cloning into a vector, transforming the mixture into E. coli. Sequencing and phylogenetic analysis were then performed to study the enolase fragment.
• All three primers (bacterial, fungal, and plant) magnified bacterial enolase genes

• Phylogeny shows diversity of bacterial enolase genes

• More specific primers need to be developed
- Hurt, et al.
- Brodie
- TruRNA mini kit
- MoBio PowerSoil
Hurt, et al.

Brodie

TruRNA mini kit

MoBio PowerSoil

DNA

23s rRNA

16s rRNA
Next step: clean up DNA contamination
Develop plant, fungal, and bacterial primers for enzymes relevant to respiration

Construct & sequence environmental gene libraries for soil community

Determine relative proportions of bacterial, fungal, and plant respiration in field experiment

Compare results with stable isotope results
Inhibitive respiration experiment

- Autoclaved soil
- Soil
- Soil + antibacterial
- Soil + antifungal
- Soil + Antibacterial + antifungal
Substrate optimization

- Autoclaved soil
- Soil + 0.5% glucose
- Soil + 1% glucose
Glucose changes ratios of soil organisms
Old Field Community Climate and Atmospheric Manipulation

- Oldfield ecosystem:
 - Ribgrass
 - Meadow fescue
 - Orchardgrass
 - Broomsedge
 - Goldenrod
 - Lespedeza
 - Red clover

- Treatments:
 - $T=\text{ambient or ambient } + 3.5^\circ C$
 - $[\text{CO}_2]=\text{ambient or ambient } + 300 \text{ ppm}$
 - Precipitation=$2 \text{ mm/wk or 25 mm/wk}$
Future Directions

• Integrate what I’ve learned at soyFACE and OCCAM
• Ecosystem-level research
• Agricultural system
Thank you: GCEP (Milt & Jeff), Aimée Classen, Hector Castro, Rich Norby, Chris Schadt, Kerri Crawford, Luke Zachman, Colleen Iverson, Emmi Felker-Quinn, Rebecca Roha, and Marlene Tyner