Global change in the Great Plains: Biodiversity, fire, and ecosystem carbon storage

GCEP End of Summer Workshop 2006

Emily Hollister
Department of Rangeland Ecology & Management
Texas A&M University

Global Change in the Great Plains

Land use/cover change

- Agriculture (crops & grazing)
- Fire suppression
- Invasive species
- Woody encroachment
- Urban encroachment

My Research

- Prescribed fire
- Woody encroachment
- Carbon cycle
- Net primary productivity
- Soil carbon pools and fluxes
- •Soil microbial community

Waggoner Ranch Experimental Site

Location: Wilbarger County, TX

Mean Annual Precipitation: 665 mm

Mean Annual Temperature: 16.1 °C

Soil Texture: 16% sand, 52% silt, 32%

clay

Soil pH: 7.0-7.21

Vegetation: Mixed grasses and *Prosopis* glandulosa

Fire regime: Repeated winter-only and summer-only fires

Image courtesy of: Texas Parks and Wildlife

Fire and Vegetation are associated with altered nutrient dynamics

Fire

- •Increased SMB **
- •Soil organic C
- •Soil total N
- •MRT of labile C **

Vegetation

- •SMB **
- •Soil organic carbon **
- •Soil total N **
- •Size of slow C pool **

May be driven by ANPP

Differences in grasses vs. mesquite

Linking above- and belowground communities

- Do microbial communities vary with vegetation type?
 - Cloning and sequencing approach
 - 4 vegetation types

- Honey mesquite (*Prosopis glandulosa*)
 - N₂ fixing, woody species
 - Subcanopy soils have increased SOC and soil total N
 - Potential microclimate effects

- C₃ perennial grasses
 - Medium stature (25-100 cm)
 - Cool season species
 - Contributes ~30-50% of herbaceous ANPP
 - Dominated by Nassella leucotricha

- C₄ midgrasses
 - Medium stature (30-100+ cm)
 - Warm season growth
 - 2nd largest contributor to herbaceous ANPP

- C₄ shortgrasses
 - Short stature (5-25 cm)
 - Warm season growth
 - Dominated by *Buchloe dactyloides*

Identifying those belowground

General composition

 Phylum level classification using the Ribosomal Database Project

 RDP estimates the likelihood that membership frequencies are equal

General composition

- Most libraries were very similar, except C₄ shortgrass
- What was the nature of these differences?
- How would they affect diversity estimates?

A few words about Diversity...

- Sample effort, size*, and statistics
- Definition of a "species"
 - − Humans and primates differ by ~2%
 - Bacterial OTUs are often defined by 3% difference
- Multiple measures

A few words about Diversity...

Multiple measures

- Richness ("species" number)
- Evenness (distribution of abundance)
- Overlap (shared species)
- Structure (species and relative abundance)
- Phylogeny (evolutionary relationships)

Basic Diversity Measures

Vegetation	Sequences analyzed	OTUs classified	Shannon- Wiener	Simpson's (1/D)	Chao I Richness Estimate
Mesquite	90	76	4.25	190.71	314.33
C ₃ grass	55	44	3.71	114.23	118.38
C ₄ Midgrass	67	57	3.97	157.93	261.17
C ₄ Shortgrass	116	98	4.51	277.92	366.15

- Many of these indices are sample size-dependent.
- These don't tell us how our 4 communities differ.

Comparisons between communities

- Community similarity
 - Composition
 - Shared members
 - Structure (relative abundances)
 - Phylogeny
 - Do communities share a similar phylogenetic (evolutionary) history?

Composition and Overlap

• SONS – Shared OTUs and Similarity*

- Calculates shared richness
- Calculates community overlap
 - Incidence-based
 - Abundance-based
 - Relative abundance-based

^{*}Schloss, PD and Handelsman J. 2006. Introducing SONS, a tool for OTU-based comparisons of membership and structure between microbial communities. *Applied and Environmental Microbiology*.

Phylum level composition

Composition and Overlap

Vegetation pair	Shared members (OTUs)		Community similarity (structure and relative abundance)
M-C ₃	0.156	0.263	0.277
M-C ₄ Mid	0.197	0.261	0.128
M-C ₄ Short	0.222	0.136	0.110
C ₃ -C ₄ Mid	0.274	0.215	0.141
C ₃ -C ₄ Short	0.510	0.191	0.170
C ₄ Mid-C ₄ Short	0.240	0.143	0.137

Composition and Overlap

Vegetation pair	Shared members (OTUs)		Community similarity (structure and relative abundance)
M-C ₃	0.156	0.263	0.277
M-C ₄ Mid	0.197	0.261	0.128
M-C ₄ Short	0.222	0.136	0.110
C ₃ -C ₄ Mid	0.274	0.215	0.141
C ₃ -C ₄ Short	0.510	0.191	0.170
C ₄ Mid-C ₄ Short	0.240	0.143	0.137

TreeClimber

 Asks: Do two or more communities share a common level of phylogenetic diversity?

Independent of species similarity

Vegetation pair	Parsimony score	Random vs. Perturbed
M-C ₃	36	0.136
M-C ₄ Mid	45	0.284
M-C ₄ Short	38	0.034
C ₃ -C ₄ Mid	37	0.466
C ₃ -C ₄ Short	34	0.047
C ₄ Mid-C ₄ Short	40	0.041

Vegetation pair	Parsimony score	Random vs. Perturbed
M-C ₃	36	0.136
M-C ₄ Mid	45	0.284
M-C ₄ Short	38	0.034
C ₃ -C ₄ Mid	37	0.466
C ₃ -C ₄ Short	34	0.047
C ₄ Mid-C ₄ Short	40	0.041

Vegetation	Parsimony	Random vs.
pair	score	Perturbed
M-C ₃	36	0.136
M-C ₄ Mid	45	0.284
M-C ₄ Short	38	0.034
C ₃ -C ₄ Mid	37	0.466
C ₃ -C ₄ Short	34	0.047
C ₄ Mid-C ₄ Short	40	0.041

Why does the C_4 shortgrass community stand apart from the rest?

Potential underlying causes

- Ecosystem patterning
 - Spatial and temporal
 - Above and belowground

Potential underlying causes

• Ecosystem patterning

Potential underlying causes

Mesquite

- Ecosystem patterning
- Microclimate
- Plant tissue chemistry

Thank You

- Department of Energy
 - GCEP
 - Microbial Ecology and Physiology group at ORNL
- Boutton lab
- Texas Agricultural Experiment Station
- Pat Schloss (DOTUR, TREECLIMBER, SONS)
- Samuel Roberts Noble Foundation

