A Study to Measure the Chemical Characteristics of Particle Emissions from Biomass Burning Stoves

End of Summer Workshop, 2006

Dabrina Dutcher

School of Public Health and Department of Mechanical Engineering
University of Minnesota
Direct Emissions of Particulate Matter
Goals of the Study

• **Goal 1:** Measure chemical composition and associated parameters (size distribution and mass) of the particles emitted from wood and corn combustion.

• **Goal 2:** Compare chemical composition, size distribution and mass emissions from various types of fuel combusted:
 – Hard wood: Oak, Birch
 – Soft wood: Pine
 – Corn

• **Goal 3:** Compare emissions characteristics.
It is of interest to characterize sources of particles in the atmosphere

• Aerosol particles are of critical importance in the atmosphere because of their effect on:
 – Human Health
 – Visibility
 – Climate Change

• We need to understand contributions from various emission sources, eg:
 – Anthropogenic, eg: combustion (gasoline, diesel, biomass, etc.)
 – Natural, eg: sea-spray.
Schematic of Our Measurements

Sample directly from chimney

Lopi Wood Stove
St. Croix Corn Stove

Gas emissions (CO₂, CO, O₂, NOₓ)

Particle Size Distribution (SMPS)

Particle Mass Concentration (TEOM)

Particle Chemical Composition (ATOFMS)
Sampling from the Wood Stove
The Corn Stove
Gas Measurements

- Characterize combustion conditions
- Concentrations of: CO$_2$, CO, O$_2$, NO, NO$_2$
- Two gas monitors to determine the dilution ratio
 - Monitor #1 (TSI CA-Calc) measured raw emissions
 - Monitor #2 (ECOM-AC) measured diluted emissions
Particle Mass Concentration

- TEOM: Thermal Electric Oscillating Microbalance
- PM2.5 mass emissions (mg/m³ of exhaust sampled)
- Mass emission is a useful measure when comparing emissions from different sources
Particle Mass Concentration

Oak

mass concentration (ug/m³)

Fire Lit

Door Closed

Reloaded Wood

time

Particle Technology Laboratory
Particle Mass Concentration

Birch

Mass concentration (ug/m3)

Choked
Fire (vent)
Door Closed
Fire Lit

Particle Technology Laboratory
Particle Size Distribution

• SMPS: Scanning Mobility Particle Sizer
• Number of particles as a function of particle size
 – 10 – 700 nanometers
 (1 nanometer = 10^{-9} meters)
 – Size distribution measured every 2.5 minutes
• Particle size determines many atmospheric and health effects
Particle Size Distribution

- Pine (avg 11:40-12:45)
- Corn (avg 11:45-12:20)
Particle Size Distribution

- Oak (14:00)
- Oak (14:45 after adding wood)
Particle Chemical Composition

- ATOFMS: Aerosol Time-of-Flight Mass Spectrometer
- Size and chemical composition of individual particles, in real time
 - Ash
 - Soot
 - Organic compounds
TSI 3800: Aerosol Time of Flight Mass Spectrometer - AKA Wallace

- Aerodynamic Lens
- Ellipsoidal Mirrors
- Sizing Lasers (532 nm)
- PMT
- Reflectron
- Microchannel Plate Ion Detectors
- Ionization/Desorption Laser (266 nm)
ATOFMS – Pine (sorted by particle size)

Particle Technology Laboratory
Particle Technology Laboratory

ATOFMS - Corn

K₂SO₄⁺
K₂HSO₄⁺
K₂Cl₃⁺
K⁺
Results?

- A great deal of good data was acquired
- Data analysis is underway and will require integration of the results from all of the instruments used
Acknowledgements

• Jeff and Milt, GREF for funding
• Deborah Gross, Joakim Pagels, Mark Stolzenburg, Peter McMurry
• Woodland Stoves and Fireplaces
 – Peter Solac, Ted Palmer and coworkers
• TSI, Inc. (for loan of CA-Calc)
• University of Minnesota Center for Diesel Research (for loan of ECOM-AC)