Gross primary production is stimulated for *Populus* species grown under free-air CO$_2$ enrichment

Victoria Wittig1, Carl Bernacchi1, Xinguang Zhu1, Reinhart Ceulemans2, Paolo De Angelis3, Birgit Gielen2, Franco Miglietta4, Patrick B. Morgan1, Stephen P. Long1

1University of Illinois @ Urbana-Champaign; 2University of Antwerp, Belgium; 3University of Tuscia, Italy; 4Institute of Agrometeorology and Environmental Analysis, Italy
Biogeochemistry, (Schlesinger, 1997)
Gross Primary Production

- GPP = gross photosynthetic carbon assimilation
- Driving step of the global carbon cycle
- Forest trees account for large proportion of terrestrial GPP
Intergovernmental Panel on Climate Change (Houghton, 2001)
How will GPP of trees be changed in an elevated \(CO_2 \) world?
Two Problems

1. Growing trees in an elevated CO_2 atmosphere: OTC’s

2. Measuring GPP of CO_2 enriched trees: Closed Chambers
POPFACE: Poplar Free-Air CO$_2$ Enrichment

- FACE: No alteration to climate or restriction to growth
- Large scale; short-rotation intensive Populus plantation
- Enrichment of CO$_2$ to 550 ppm in 3 plots; 3 control plots
FACE Technology

Photo by Steve Bunn
FACE Technology
POPFACE: Poplar Free-Air CO$_2$ Enrichment

Rotation Cycle
1999-2001

9ha

CONTROL

ELEVATED (550ppm)
Measurements

- Photosynthetic Photon Flux Density (PPFD) - 30 min
- Temperature - 30 min
- Leaf Area Index (LAI) - biweekly
Measurements

- Gas exchange measurements
- Maximum rate of electron transport: J_{max}
- Maximum rate of carboxylation: $V_{c,\text{max}}$
Maximum rate of electron transport: J_{max}
Maximum rate of carboxylation: $V_{c,max}$

Rubisco-Limited Photosynthesis
A/c_i Response Curve

Net CO$_2$ assimilation rate (A) mmol m$^{-2}$ s$^{-1}$

Intercellular [CO$_2$] mmol mol$^{-1}$

Rubisco Limited Photosynthesis

RuBP Limited Photosynthesis

Maximum Rubisco Activity - $V_{c,max}$

Maximum Rate of Electron Transport - J_{max}
From Measurements to a Model of GPP

\[V_{c,\text{max}} \]
\[J_{\text{max}} \]
Light
Temperature
Leaf Area Index
\[CO_2 \]

Photosynthesis

GPP
Utilize Independent Data to Model GPP

1. Data
2. Leaf Photosynthesis
3. GPP
Utilize Independent Data to Model GPP

1. Data
2. Leaf Photosynthesis
3. GPP
Average Monthly PPFD (µmol m⁻² s⁻¹)

Average Monthly Temperature (°C)

1999
- PPFD
- Temperature

2000

2001

Month: MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
$P.\ nigra$

Vc,max, 25°C & Jmax, 25°C

LAI (m2 m$^{-2}$)

Month

<table>
<thead>
<tr>
<th>Year</th>
<th>J$_{\text{max}}$</th>
<th>Vc$_{\text{max}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- △△△triangle: Control
- ■■ ■square: Elevated
Utilize Independent Data to Model GPP

1. Data
2. Leaf Photosynthesis
3. GPP
Farquhar Model of Leaf Photosynthesis (A_{leaf})

$$A_{\text{leaf}} = f(\text{PPFD, } T, \text{ CO}_2, J_{\text{MAX}}, V_{C, \text{MAX}})$$
Leaf Photosynthesis (A_{leaf})

$$A_{leaf} = \left[1 - \frac{\Gamma^*}{C_i}\right] \cdot \min\{W_c, W_j\}$$

W_c = Rubisco-Limited photosynthesis

W_j = RuBP-Limited photosynthesis
Utilize Independent Data to Model GPP

1. Data
2. Leaf Photosynthesis
3. GPP
Mean PPFD of Sunlit Leaves → Sun Canopy Photosynthesis (A_{sun})
Mean PPFD of Shaded PPFD → Shade Canopy Photosynthesis (A_{shade})

Forseth & Norman, 1993; Long 1991
\[\text{LAI}_{\text{sun}} = (1-e^{-k\text{LAI}/\cos\theta}) \times \cos\theta / k \]

\[\text{LAI}_{\text{shade}} = \text{LAI} - \text{LAI}_{\text{sun}} \]

\[k = \text{Foliar absorption coefficient} \]
\[\theta = \text{solar zenith angle} \]

Forseth & Norman, 1993; Long 1991
GPP

\[GPP = A_{sun} \cdot LAI_{sun} + A_{shade} \cdot LAI_{shade} \]
Hypotheses

1. Elevated CO_2 will stimulate $\text{Gross Primary Production (GPP)}$

2. Sustained stimulation of GPP throughout rotation cycle (1999-2001)
Results?
P. nigra
July, 2000
Percent Stimulation Decreased

- Absolute GPP higher in elevated plots all years
- Relative stimulation decreased with canopy closure.
GPP Validation: Net Primary Production (NPP)

- NPP = GPP - Autotrophic Respiration (Ra)

- Assuming 40% GPP lost to Ra, can calculate NPP

- Adding up biomass increments from POPFACE and making minor assumptions about litter turnover, can calculate NPP
<table>
<thead>
<tr>
<th>Species</th>
<th>GPP(1-0.4)</th>
<th></th>
<th>Biomass increments + root and leaf turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Elevated</td>
<td>Control</td>
</tr>
<tr>
<td>P. alba</td>
<td>73</td>
<td>87</td>
<td>63</td>
</tr>
<tr>
<td>P. nigra</td>
<td>79</td>
<td>103</td>
<td>81</td>
</tr>
<tr>
<td>P. x euramericana</td>
<td>59</td>
<td>79</td>
<td>66</td>
</tr>
<tr>
<td>Average</td>
<td>27%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stimulation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biomass increments + root and leaf turnover reproduced from Calfapietra et al. 2003 and Lukac et al. 2003
Discussion

• The decline in relative stimulation in GPP is a function of canopy closure not acclimation
• An increasing proportion of GPP occurs in the shade: RuBP-Limited Photosynthesis
• RuBP-Limited Photosynthesis not as responsive to elevated CO_2 as Rubisco-Limited Photosynthesis
Conclusion

• Hypothesis 1 supported: Stimulation of GPP in elevated CO$_2$ treatments

• Hypothesis 2 not supported: Although absolute GPP was stimulated in all years, the relative magnitude of the stimulation decreased with canopy closure
Implications

• Important to understand the dynamics in tree canopies

• Sun-shade model effective at capturing these dynamics

• GPP can be effectively estimated
Future Directions

• Interacting Global Changes:
 Rising CO_2 + Rising O_3
Acknowledgements

Advisor: Steve Long

Long Lab:
Joe Castro, Charles Chen, Emily Heaton, Andy Leakey, Shawna Naidu & Richard Webster

DOE-GCEP: Graduate Research for the Environment Fellowship (GREF)

UIUC Environmental Council
\[Q_{dir} = I_s \star \odot \left(\frac{P}{P_0} / \cos \theta \right) \]

\[Q_{diff} = 0.5 \star I_s \left(1 - \odot \left(\frac{P}{P_0} / \cos \theta \right) \right) \star \cos \theta \]

\[Q_{scat} = 0.07 \star Q_{dir} \star (1.1 - 0.1 \star \text{LAI}) \star e^{-\cos \theta} \]

\[Q_{shade} = Q_{diff} \star e^{-0.5 \text{LAI}^{0.7}} + Q_{scat} \]

\[Q_{sun} = Q_{dir} \left(\frac{\cos d}{\cos \theta} \right) + Q_{shade} \]

Where: \(I_s \) = solar constant; \(\odot \) = atmospheric transmittance;
\(d \) = angle between the leaf surface and the direct beam solar radiation;
\(P/P_0 \) = ratio of standard and sea level atmospheric pressure