Mechanisms of Soil Carbon Sequestration with Reforestation of Tropical Pastures

Erika Marín-Spiotta
GREF Fellow
Department of Environmental Science, Policy and Management
University of California, Berkeley
• Introduction
• Part 1: Patterns in soil C content and dynamics
 Carbon-13 as a tool
• Part 2: Mechanisms
 Soil aggregation: physical protection
 C Chemistry: chemical and physical protection
• Summary
View from below

- Better understanding of the belowground component of cycle of major greenhouse gas
- C sequestration in soils
- Rehabilitation of degraded soils
- Bioremediation
Secondary forests dominate tropical landscape.

- Deforestation main land use studied in tropics
- Puerto Rico is at opposite end of land conversion: reforestation important process
- Reforestation important ecologically and economically: reclamation degraded soils, habitat restoration, forest goods and services
Research Objectives:

• To describe general pattern in soil C accumulation or loss with reforestation of tropical pastures
• To examine mechanisms that lead to soil C storage
CHRONOSEQUENCE APPROACH

- **ACTIVE PASTURES**
 - 10
 - 20
 - 30
 - 60
 - 80

- **SECONDARY FORESTS**
 - (years since pasture abandonment)

- **OLD-GROWTH FORESTS**

- Wet subtropical forest (400-600 masl).
- All sites are on same soil series (Los Guineos, Oxisols).
- 7 age classes, 3 site replicates per age for a total of 21 sites.
• Objective 1: Changes in soil C over forest succession
Field Sampling

- Collect soils every 10 cm to a 1 m depth, 3 soil pits per site
- Collect roots, forest floor
- Litter baskets to estimate aboveground productivity and leaf samples for chemical analyses and decomposition studies
Soil C Content (MgC/ha) in 0-10 cm Depth

Land Use (Secondary Forest Age in years)

Active Pasture

10

20

30

60

80

Old-Growth Forest

MgC/ha
C Fractionation

- Experimental and modeling studies suggest that the total C pool is composed of different components, or “fractions”, with different residence times in the soil.
- Attempts to separate total C pool into “fractions”, i.e. stages of decomposition.
- Operationally defined.
- Common methods: particle size, density, aggregate-size, solubility, isotopes.
1.1% of C globally occurs as ^{13}C

Isotopic fractionation, or differences in the $^{13}\text{C}/^{12}\text{C}$ ratio, occurs when a physical, chemical or biological process favors one isotope over the other.

Useful tool for the:

- study of landscape level changes in vegetation
- reconstruction of past climatic, aquatic and atmospheric environments
- study of trophic levels (you are what you eat)
- study of carbon dynamics (sources, rates)
- many other things… especially when combined with $^{15}\text{N}/^{14}\text{N}$ and $^{18}\text{O}/^{16}\text{O}$.

Tools: Carbon Stable Isotopes
Carbon-13 in Plants

- Differences in C fixation pathways of **photosynthesis** results in differences in 13C / 12C of plants.
- During C_4 and Kranz photosynthesis, less fractionation against 13C than C_3 plants.
- Tropical pasture grasses are C_4 plants (average δ^{13}C value of -12‰) and woody vegetation is C_3 (average δ^{13}C value of -25‰).
• Simple mixing model to determine proportion of C\textsubscript{4} vs. C\textsubscript{3} derived C in SOM pool:

\[
\% C4 = \left(\delta - \delta_L / \delta_G - \delta_L \right) \times 100
\]
\[
\% C3 = 100 - \% C4
\]

where \(\delta \) is the \(\delta^{13}C \) of the soil sample in question, \(\delta_L \) is the \(\delta^{13}C \) of a composite sample of forest floor and roots (or C3), and \(\delta_G \) is a composite sample of pasture grass tissues (C4).
Soil δ^{13}C-C ($\%$) with Depth

![Graph showing Soil δ^{13}C-C ($\%$) with Depth](image_url)

Legend:
- Red diamond: Active Pasture
- Yellow circle: 10 yr secondary forest
- Green triangle: 20 yr secondary forest
- Orange triangle: 30 yr secondary forest
- Purple square: 60 yr secondary forest
- Magenta square: 80 yr secondary forest
- Blue diamond: Old-growth forest
Assuming a δ_{L} of -17‰ and a δ_{G} of -26‰, at our 20 year old sites:

<table>
<thead>
<tr>
<th>Soil depth (cm)</th>
<th>%C$_3$</th>
<th>%C$_4$</th>
<th>C$_3$/ C$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>76</td>
<td>24</td>
<td>3.10</td>
</tr>
<tr>
<td>20-30</td>
<td>67</td>
<td>33</td>
<td>2.06</td>
</tr>
<tr>
<td>30-40</td>
<td>74</td>
<td>26</td>
<td>2.79</td>
</tr>
<tr>
<td>40-50</td>
<td>55</td>
<td>45</td>
<td>1.21</td>
</tr>
<tr>
<td>50-60</td>
<td>50</td>
<td>50</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Table 1. Example of proportion of C$_3$ and C$_4$ derived C for 20 year old sites.
Using 13C to estimate turnover rates

- Pasture: 60 t C/ha, 100% C$_4$
- Secondary Forest: 80 tC/ha
 - 54.5% C$_4$ = 43.6 t C/ha
 - 45.5% C$_3$ = 36.4 t C/ha

- After 10 years forest regrowth, 16.4 t C/ha of pasture-derived C was lost; rate of 1.64 tC/ha/y.

- Assumes: linear rate of loss, start with 100% C$_4$ pasture, no fractionation during decomposition.
• Challenges using 13C method:

 – unable to distinguish between residual “primary” forest C and new secondary forest C (both C$_3$)
 – uncertainties in δ^{13}C of end points, ages, turnover rates, land use history
 – assumptions inherent in “chronosequence” studies
 – simple mixing model (will try to improve)

I will also use 14C and bomb carbon models to “date” soil C fractions and resolve uncertainties in turnover rates.
LAND USE HISTORY

• Need to know LUH for accurate turnover rates
• Difficulty in tropics
• Puerto Rico

DISADVANTAGE: multiple land uses

ADVANTAGE: records, records, records by both Spanish and U.S. govts.: detailed maps; aerial photographs; ownership records; land tax documents; agricultural subsidy records
Objective 2: Mechanisms of soil C storage

- Examine effect of changes in soil physical structure and plant litter chemistry on the formation of stable SOM.
Hypotheses:

1.) The primary mechanism for soil C storage during reforestation will be the development of an aggregate hierarchy.

2.) The hydrophobic content of plant litter will be more important than traditional measures of litter quality in the formation of stable soil C.
H1: The primary mechanism for soil C storage during reforestation will be the development of an aggregate hierarchy.

- **AGGREGATE HIERARCHY**: model that describes the contribution of SOM as a stabilizing agent in the hierarchical binding of primary particles into microaggregates and microaggregates into larger aggregates (Tisdall and Oades 1982).
The defining characteristics of AH are:

1. A gradual breakdown of macroaggregates into microaggregates with increasing dispersing energy;
2. An increase in C content with increasing aggregate size; and
3. Decrease in C turnover rates from macroaggregates to microaggregates (Six et al. 2000).
C protection within soil aggregates

- C protected within microaggregates where accessibility to microbes is limited or anaerobic conditions may occur
- Lower C contents in cultivated soils attributed to disruption of soil aggregates
- C within aggregates is older than C on aggregate surfaces
- CO$_2$ lost from disturbed aggregates
Soil aggregation (cont.)

- Aggregate hierarchy thought not to be important in highly weathered tropical soils
- But recent evidence AH in Oxisols
- Recovery of aggregation post disturbance?
- Effect cattle vs pasture grasses
Soil aggregation (cont.)

- **Approach:**
 - Test for differences in water-stable aggregate size distribution across sites
 - Test for presence of aggregate hierarchy:
 - expect total C and N to increase with size
 - expect C:N ratio to decrease from larger to smaller
Percentage of the initial mass of soil aggs > 4750 um that disassociated into smaller agg sizes and into primary particles.
C composition of different aggregate sizes

Aggregate Size Class (um in diameter)

Pasture
10 yr forest
Old-growth forest
Future work with soil aggregation

• Modified method for highly weathered, very stable soils (increase slaking)

• Test for protection of C from decomposition within aggregate sizes:
 – Lab soil incubations: measure soil CO$_2$ and 13CO$_2$, normalized for total soil C from disturbed vs. undisturbed aggregates
 – estimate ages of C associated with different aggregate sizes using 13C and 14C
H2: The hydrophobic content of plant litter will be more important than traditional measures of litter quality in the formation of stable soil C.

- Litter C:N, lignin:N and lignin content as measure of decomposability
- But lignin degraded in soils
- Evidence of accumulation of nonpolar C in older soil C fractions
- Recent attention to plant and soil lipids as precursors to most stable SOM
Hydrophobicity (cont.)

• Plant lipids: secondary compounds, waxes, suberin, terpenoids.
• Theories of plant herbivory suggest production of these secondary plant compounds increases with forest succession
• Expect to see an increase in transition from pasture grasses to forest species
• But not a lot known yet about them….
Hydrophobicity (cont.)

• **Approach**

1. Characterize and quantify hydrophobicity of SOM and litter inputs: nonpolar organic extractions and 13C-NMR

2. Test for correlations between chemistry plant inputs and SOM pools, SOM turnover rates, litter decomposition rates
3. How does chemical composition of SOM/DOM affect physical protection?
- Quantify sorptive capacity of soils at my sites
- Perform adsorption experiments with “native” and “transplant” DOM and SOM and litter extracts
Objectives are to describe soil C dynamics during reforestation of abandoned pastures and examine how changes in soil structure and litter quality that occur during reforestation of pastures affect soil C storage.
Summer 2003 Plans

• Collect land use and land cover change historical data
 (continue with interviews and visit General Archives in San Juan)
• Finish site characterization: GPS, aboveground tree species composition and basal area for estimation of tree biomass
• Set-up site vs. litter quality decomposition experiment:
 - in situ and transplant mixed leaf litter decomposition bags
 - common leaf litter (or common wood substrate) across chronosequence

And then back to Berkeley to be a lab slave …..
Collaborators

- **Dr. Whendee Silver** (U.C. Berkeley): soil respiration and other trace gas production; litterfall rates
- **Dr. Rebecca Ostertag** (U. of Hawaii): foliar and root litter decomposition experiments (litter vs. site quality transplant)
- **Dr. Margaret Torn** (Lawrence Berkeley National Laboratory & GREF mentor): 13C-CO_2 soil respiration and “bomb” (14C) modeling
Funding and logistical support by DOE Graduate Research Environmental Fellowship; NSF; USDA Forest Service, International Institute for Tropical Forestry; NASA EPSCOR and UPR, Río Piedras; Estación Experimental Agrícola, RU Mayagüez; Campus Univ. de Cayey; Reserva Forestal de Carite; Reserva Estuarina de Bahía de Jobos.

ACKNOWLEDGMENTS