Relative Rate Studies of Chlorine Atoms with Crotonaldehyde and Methyl Vinyl Ketone

M. Martínez-Avilés and B. J. Finlayson-Pitts
Department of Chemistry
University of California, Irvine
Abstract

The relative rates of reactions of chlorine atoms (Cl) with two organic compounds, crotonaldehyde (CA) and methyl vinyl ketone (MVK), have been studied. Each organic compound along with Cl$_2$ was introduced into a 30 L Teflon bag with N$_2$ or air as diluent. The mixture was then photolyzed repetitively for brief periods and, after each photolysis cycle, a sample was analyzed using the analytical technique of gas chromatography-flame ionization detection (GC-FID). The rate constant for the reaction of MVK with Cl was determined to be $(2.3 \pm 0.5) \times 10^{-10}$ cm3 molecule$^{-1}$ s$^{-1}$. Preliminary data for the reaction of CA with Cl were obtained. These relative rates and their atmospheric implications are presented.
Motivation

- CCA and CMVK are considered unique chlorine-containing compounds that can serve as “markers” of chlorine atom chemistry.

- Wang and Finlayson-Pitts (2001) identified CCA and CMVK as the chlorine-containing products from the chlorine atom reaction with the anthropogenic specie 1,3-butadiene.
Atmospheric Layers

- Variations are due to alterations in the chemical and physical nature of the atmosphere with altitude.
- Troposphere contains about 75% of the total mass of the atmosphere.
- Stratosphere is also called the ozone layer.
Cl Chemistry in Coastal Areas

1,3-Butadiene

Products

ClO

O₃

Cl

ClNO

ClNO₂

Cl₂

NO₂

N₂O₅

O₃

OH

ClONO₂

HCl

HNO₃

NaCl

Sea Salt Particles

1,3-Butadiene (HAP)

Created by W. Wang, Department of Chemistry, University of California, Irvine
Reactions of Cl⁻

- Generation of Cl radical from salt
 - NaCl + 2NO₂ → NaNO₃ + ClNO
 - Photolysis: ClNO + hν → NO + Cl⁻
 - NaCl + N₂O₅ → NaNO₃ + ClNO₂
 - Photolysis: ClNO₂ + hν → NO₂ + Cl⁻

- Reactions with organics
 - Abstraction
 - RH + Cl⁻ → HCl + R⁻
 - Addition
 - R₂C=CR₂ → R₂C⁻-CR₂Cl
Studied Compounds

Methyl Vinyl Ketone

Crotonaldehyde

Nonane
Experimental Apparatus

50 L Teflon collapsible reaction chamber

black lamps
300-400 nm

septum for liquid injections

to vacuum pump

pressure gauge

Carle gas valve

GC with capillary column

FID

vacuum manifold

0.497 L collection bulb

Created by A. Ezell, Department of Chemistry, University of California, Irvine
Flame Ionization Detector (FID)

- Most used detector for gas chromatography.
- Responds to compounds that produce ions and electrons when burned in a H₂-air flame.
- Insensitive toward non-combustible gases.

From HP 5890 SERIES II Gas Chromatograph Reference Manual
Relative Rate Technique

- Reference compound
 - Nonane
- Organics of interest
 - MVK
 - CA
- Ratio of rate constants
 \[
 \ln \left(\frac{[\text{organic}]_0}{[\text{organic}]_t} \right) = \left(\frac{k_{\text{organic}}}{k_{\text{ref}}} \right) \ln \left(\frac{[\text{reference}]_0}{[\text{reference}]_t} \right)
 \]
Relative Rates Methodology

- **Sampling**
 - Prepare mixtures of reference, organic and chlorine.

- **Data Collection**
 - GC-FID measures the loss of organic compounds after photolysis.

- **Data Analysis**
 - \[\ln \left(\frac{[organic]_0}{[organic]_t} \right) = \left(\frac{k_{organic}}{k_{ref}} \right) \ln \left(\frac{[reference]_0}{[reference]_t} \right) \]
Relative Rates of Methyl Vinyl Ketone *versus* Nonane

![Graph showing the relative rates of Methyl Vinyl Ketone versus Nonane. The graph plots ln(MVK) against ln(nonane) with three linear regression lines. The equations and R^2 values for each line are provided: y = 0.4938x + 0.0081, R^2 = 0.9897; y = 0.4835x + 0.0047, R^2 = 0.9977; y = 0.4704x - 0.0031, R^2 = 0.9970.](image-url)
Relative Rates of Crotonaldehyde *versus* Nonane

![Graph showing the relative rates of crotonaldehyde versus nonane with fitted lines and their equations.](image)
Results of Relative Rates

<table>
<thead>
<tr>
<th>Organic Compound</th>
<th>k_{ref} ($10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$)</th>
<th>Relative Rate</th>
<th>$k_{\text{organic}}/k_{\text{ref}}$</th>
<th>k_{organic} ($10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVK</td>
<td>4.8</td>
<td>0.49 ± 0.11</td>
<td>2.3 ± 0.5</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>4.8</td>
<td>1.3 ± 0.5</td>
<td>6.0 ± 2.4</td>
<td></td>
</tr>
</tbody>
</table>
Experimental Results

MVK vs Nonane
- $\ln(MVK) = 0.4938x + 0.0081$
- $\ln(MVK) = 0.4704x - 0.0031$

CA vs Nonane
- $\ln(CA) = 1.4764x + 0.0056$
- $\ln(CA) = 1.1566x + 0.031$
- $\ln(CA) = 1.278x - 0.0645$
Conclusions

- The rate constant for the reaction of MVK with Cl was determined to be \((2.3 \pm 0.5) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\).

- The rate constant for the reaction of CA with Cl was determined to be \((6.0 \pm 2.4) \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}\).

- The rate constant for CA seems to be high and hence not reasonable, thus more experiments need to be done regarding this reaction.
Acknowledgments

- Finlayson-Pitts Research Group
- Office of Graduate Studies
 University of California, Irvine
- Global Change Education Program, DOE